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A Theory for Time Correlation Functions in Liquids 

Jianshu Cao and Gregory A. Voth 

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104- 

Abstract 

A theory for time correlation functions in liquids is developed based on the 

optimized quadratic approximation for liquid state potential energy functions. 

The latter approximation leads to the rigorous mathematical definition of in- 

herent structures in liquids and their vibrational fluctuations, in turn leading 

to the concept of inherent normal modes in the liquid state. These normal 

modes are called "optimized normal modes". Unlike normal modes based 

on instantaneous liquid state configurations, the optimized normal modes are 

stable, having real-valued frequencies, and each inherent liquid state struc- 

ture has a different set of modes associated with it. By including a single 

phenomenological decay function which captures the average transition rate 

between the different sets of normal modes, velocity time correlation func- 

tions and dynamical friction kernels for solute bonds can be predicted in 

good agreement with direct molecular dynamics simulation results. 
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I. INTRODUCTION 

One of the basic ingredients in condensed matter theory [1,2] is the concept of phonons, 

i.e., the small oscillations about a stable structure or the energy minimum, which can be 

related to many equilibrium and transport properties such as heat capacity, thermal con- 

ductivity, thermal expansion, light scattering, etc. It is clear, however, that liquids are 

different from solids because of their lack of stable structures, making it formally difficult 

to apply the well-developed theory of phonons in order to calculate, e.g., time correlation 

functions and thereby predict experimental observables. A clear challenge, therefore, is to 

derive from first principles a set of "modes" which to some degree dominate the molecular 

motions in liquids, at least for times smaller than some phenomenological relaxation time of 

such modes. [3,4] The purpose of this paper is to provide a formal prescription for defining 

such modes which we call "optimized normal modes" (ONM). A related and challenging 

problem is the microscopic origin of the relaxation behavior of these modes, but this issue 

will be left to future research. 

It should be noted that the theory described herein builds on the earlier work of Stillinger 

and Weber [5-7] and of Zwanzig. [8] The former authors proposed the inherent structure 

picture of liquids in which such structures are determined by a steepest-decent quench on 

the liquid state potential hypersurface. The many-body phase space is thus divided into 

subspaces corresponding to many different local minima. The distribution of the inherent 

structure local minima depends on the interaction potential, temperature, and density. The 

Stillinger and Weber stable states, [5-7] being local potential minima, are free of imaginary 

frequencies and thus ideal candidates for an effective harmonic approximation. Unlike in 

solids, however, the inherent structure is a metastable state so there must be an overall 

decay behavior associated with the transitions between the metastable states. Though rich 

in physical insight, the work by Stillinger and Weber did not provide a variational procedure 

for defining the inherent structures and their associated vibrational modes for a given set of 

thermodynamical state variables (e.g., temperature). 



In his dynamical view of liquids, Zwanzig [8] suggested that after a period of vibrational 

motion about an inherent structure minimum, the liquid will jump through a saddle point 

to another local minimum and its associated vibrations. Eventually, the liquid will explore 

all the phase space available to it. The transition process is characterized by an average 

lifetime "r" and thus an exponential decay factor is imposed on the harmonic motion. 

The identification of the inherent structures, the vibrational motion about them, and the 

inter-minima transitions provides a plausible picture of the underlying dynamical behavior 

of a liquid. Based on this picture, Zwanzig [8] derived an expression for the self-diffusion 

constant and a relation between self-diffusion and viscosity which is consistent with the 

Stokes-Einstein law. In this theory, Zwanzig invoked the idea of inherent structure modes, 

but he did not explicitly define those modes starting with the microscopic potential (i.e., he 

used a Debye-like approximation). In the present paper, a mathematical procedure is used to 

specify the inherent structure modes (i.e., the optimized normal modes) which provides the 

missing element in Zwanzig's picture. (See also Refs. [9] and [10] for another such approach.) 

In our previous study on the formulation of statistical mechanics based on an effective 

quadratic potential, [11] the exact cumulant expansion of the partition function was shown 

to have a one-to-one correspondence with a diagrammatic representation. It was also shown 

that diagrammatic classifications and topological reductions result in the renormalization of 

the three diagrammatic elements and thus lead to a set of self-consistent effective quadratic 

equations at different levels of approximation. The theory is applicable to both classical and 

quantum systems, and can be shown in the extremely low temperature limit to be equivalent 

to ground state calculations in a harmonic oscillator basis set. Among the central results 

of the formalism [11] is the optimized quadratic approximation (OQA) for the partition 

function which is of special importance because of its applicability to realistic many-body 

systems. The lowest-order OQA equations can be derived from the diagrammatic approach 

or, equivalently, from the Gibbs-Bogoliubov variational principle. It can be shown that the 

optimized quadratic reference potential represents the best fit to an anharmonic potential 

and any further corrections are beyond the effective potential description. 



Similar to the inherent structure picture, there exist multiple solutions to the OQA 

equations at different positions, each corresponding to a local potential minimum with its 

associated effective normal mode frequencies. Therefore, the OQA solutions separate the 

many-body potential hypersurface into different regions, each having a definite thermal 

partition, and all physical quantities can be expressed as a superposition of the OQA ex- 

pectation values weighted by the thermal partitions. The nature of the OQA solution on a 

many-body hypersurface reveals the distinction between solids, liquids, and glasses, as well 

as the transitions between those phases. When applied to liquids, this theory defines the 

inherent structures within a rigorous theoretical framework and, furthermore, introduces 

the optimized normal modes (ONM) of oscillation in a well-defined fashion. Thus, to a 

reasonable degree of mathematical rigor, there exist solid state-like concepts in liquids such 

as equilibrium structures and phonon excitations, though they are of a metastable nature. 

The notion of inherent structures and their optimized normal modes immediately induces 

one to extend the OQA theory to characterize the dynamics of liquid state systems, partic- 

ularly time correlation functions. At the level of the OQA, the approach expresses the time 

correlation function as a thermal partition-weighted superposition of optimized harmonic 

oscillator time correlation functions. As suggested by Zwanzig, [8] such a linear description 

is adequate for a time interval shorter than some relaxation time, beyond which the effective 

harmonic motion for an inherent structure decays into the effective harmonic motion for a 

different inherent structure. Motivated by this physical intuition, a decay factor is incorpo- 

rated into the expression for the time correlation function predicted by the optimized normal 

modes, thus introducing a broadening of the spectrum which defines damped normal modes 

(DNM). The decay function describes the average long time decay of correlations due to the 

transitions between the normal modes of different inherent structures. It will be shown that 

the combination of the DNM picture with the self-consistent OQA proves to be a fruitful 

theoretical framework for predicting liquid state time correlation functions. 

Another outgrowth of the present theory applies to a wide variety of processes involv- 

ing intramolecular motions in liquids which can be modeled by the generalized Langevin 



equation (GLE). [3,12,13] In the GLE approach, the dynamical solvent effect on, e.g., a 

molecular bond or some more complicated solute coordinate is characterized by a dynamic 

friction kernel which can be predicted theoretically only in the simple case of translational 

and rotational motions. [14,15] Though the validity of the GLE has not been proven in gen- 

eral, it can be rigorously derived for a Gaussian bath which consists of harmonic oscillators 

linearly coupled to the solute. [4] It will be shown that the OQA and DNM theory can 

be extended to identify the bath normal-modes in a many-body system and their coupling 

coefficients to a solute, thus providing a theory for the friction kernel in the GLE picture. 

This generalization of the theory has important implications for the study of friction on 

solute bond vibrations as well as activated barrier crossing.   In accord with the Zwanzig 

picture, the GLE bath from the DNM theory experiences an exponential decay because of 

the transitions between different inherent structure OQA solutions. By assuming that the 

exponential decay parameter can be determined from the self-diffusion behavior of the pure 

solvent, one can predict the dynamical friction kernel for a solute bond in good agreement 

with the exact result from MD simulations. [16] We believe this result to be significant 

because, in principle, it provides a microscopic theory for the GLE friction kernel in liquids. 

Before proceeding to the next section, it is important to contrast the present theory with 

the concept of "instantaneous normal modes" (INM). [9,10,17-25] In the latter theory, the 

liquid state potential is Taylor expanded at different instantaneous configurations through 

quadratic order.  A set of normal modes is then obtained by diagonalizing the force con- 

stant matrix and the short time dynamics resulting from that liquid configuration can be 

predicted. This effective harmonic motion is suggested to persist up to some characteristic 

relaxation time, at which point it is transformed into motion characteristic of another set 

of instantaneous normal modes. [9,10,17-25] The overall short time dynamics of the liquid 

is thereby determined by a superposition of the harmonic motions of all possible configu- 

rations.   The liquid state "phonon spectrum" is taken to be the ensemble average of the 

instantaneous normal modes of the liquid configurations. [17] Instantaneous normal modes 

have been used to study, e.g, the short-time dynamics of coupled translational and rotational 



motions in molecular fluids. [19] The predictions of the short-time harmonic motion were 

compared with exact molecular dynamics (MD) simulation results and found to agree only 

for short times. As a result of the anharmonicity in the liquid, the difficulty in describing 

such correlation functions with the INM theory arises due to the presence of the unstable 

modes which diverge exponentially with time. FYom this point of view, it is mainly the un- 

stable modes which destroy the linear motion of the liquid. Since the imaginary frequencies 

presumably become operational after the characteristic relaxation time, it can be argued 

that the unstable modes should be removed from the INM correlation function. [19,20] Rea- 

sonable agreement with exact MD correlation functions can be obtained when this "stable 

mode" approximation is implemented. [19,20,26,27] The underlying ONM spectrum in the 

DNM theory does not contain globally unstable modes, and it involves a rather different set 

of assumptions and approximations in its formulation. The predictions of the stable mode 

INM and DNM theories will be compared numerically for several examples in Sec. IV. 

The sections of this paper are organized are follows: In Sec. II, the DNM analysis of 

inherent structures is presented within the rigorous OQA framework. Then, in Sec. Ill the 

GLE picture is formulated in terms of constrained OQA equations and the DNM theory. 

Some illustrative numerical examples are presented in Sec. IV and concluding remarks are 

given in Sec. V. 

II. DAMPED NORMAL MODE MODE THEORY OF LIQUIDS 

In an effort to bring conceptual order to the disordered liquid state, Stillinger and Weber 

[5-7] advanced the idea of separating the statistical mechanical description of liquids into two 

distinct parts, namely, the mechanically stable packing part and the thermally fluctuating 

part. Their key idea was a configurational mapping where arbitrary sets of molecular posi- 

tions are referred to potential minima which are the inherent structures underlying the liquid 

phase. This mapping is generated by a quench procedure which follows the steepest-descent 

paths on the hypersurface of the many-body system. Much attention has been focused on 



the identification and characterization of these mechanically stable packings. 

The formalism of Stillinger and Weber [5] begins with the canonical partition function 

for N structureless classical particles, given by 

ZN  =  /dqexp[-0V(q)]    , (2-1) 

where N is the particle number and the usual normalization factor is omitted here for 

simplicity. The configurational integral is next broken into the separate contributions from 

each quench region, i.e., 

ZN =  £ /    dq«pH9V(q)]    , (2-2) 
i   JR(i) 

where R(l) defines the segment on the potential hypersurface which can be uniquely mapped 

to the inherent structure designated by the index I.   Within the region R(l), any set of 

coordinates can be traced to the quenched inherent structure, giving 

y(q)   =  l/(q,) + A,T/(q)    , (2-3) 

where V(qi) is the potential local minimum, satisfying 

W(q,)  =  0    , (2-4) 

and V denotes the spatial derivative. Consequently, the partition function can be rewritten 

as 

ZN  =  X>P(-WQO) /    dqexp[-/?A,V(q)]    , (2-5) 
l JR(l) 

where the integration accounts for the thermal fluctuations around the stable packing struc- 

ture. 

While the quench procedure may reveal the hidden structures of the liquid phase, it may 

not be particularly successful in recovering the equilibrium properties of liquids and even 

less successful in predicting their dynamical properties. While the thermal fluctuations in 

the inherent structure potential wells are suggestive of a linear harmonic motion, it turns out 



that thermally broadening the quenched structure by using an Einstein or Debye vibrational 

approximation fails to reconstruct important features such as pair correlation functions. 

There are at least two reasons for this, one being the significant anharmonicities of the 

liquid state interaction potential and the other being the geometric disorder of the inherent 

structures. Thereby, an actual set of effective harmonic modes will bear little resemblance 

to the phonon spectrum of solids as described by the Einstein or Debye models. Evidently, 

a systematic theory is required to formalize the concept of inherent structures, to establish 

the relationship between liquid dynamics and collective harmonic motions, and to allow for 

higher-order corrections. This goal can be accomplished within the framework of the OQA 

theory developed for general potentials in Ref. [11]. 

To start, the OQA of Ref. [11] for an iV-body coordinate space is briefly reviewed. Here, 

vectors and matrices are denoted by bold fonts, and optimized frequencies and positions are 

denoted by bars. The basic OQA equations can be written as 

(W(q + q))c = 0 (2.6) 

(V:W(q + q))c = K (2.7) 

where K is the optimized effective force constant matrix and V is the partial derivative 

vector Vi = d/%. The notation (• • -)c here denotes a multidimensional Gaussian average 

centered at q, i.e., 

<V(q + q))c   =      ,     1       , / dq V(q + q) exp [- q • CT1 • q/2]     , (2.8) 
i7det[27rC] J 

where the Gaussian width factor matrix C is formally expressed in the classical limit as 

C = (/3K)"1    . (2.9) 

In terms of the eigensolutions, a unitary matrix U can be found to diagonalize the mass- 

scaled force constant matrix K, giving the effective normal modes, i.e., 

U*KU = [l-u]    , (2.10) 



where {ü} is the set of the eigenfrequencies, I is the 3iV-dimensional identity matrix, and 

[I • w2] denotes a diagonal matrix with the ith diagonal element given by üf. The Gaussian 

width factor matrix in Eq. (2.9) can also be determined from the relation 

C = Ü[l-a]Üt    , (2.11) 

where Ü = m~1/2U, m is the diagonal mass matrix, and the individual elements of the 

normal mode thermal width vector are given in the classical limit by 

a, = 1//H2    • (2-12) 

Thus, the set of optimized frequencies {ü>} and average positions {q} are variationally ob- 

tained as the self-consistent solution to the transcendental matrix equations Eqs. (2.6) and 

(2.7) in iV-dimensional space. The quantum generalization of the OQA equations is given 

in the Appendix. 

As it stands, there are many possible solutions to the self-consistent OQA equations, 

each being defined in a local potential well of the many-body system. Under the condi- 

tion that different wells are separated, i.e., the barrier between any two neighboring wells 

is significantly higher than the average thermal energy, one can assume a linear superpo- 

sition of all the metastable solutions. In this spirit, the partition function in Eq. (2.1) is 

intrinsically separated into different integration regions and can be written in the quadratic 

approximation as [11] 

ZN  ~  '£Zlirefexp[-ß{AV(ql + q)}cl} (2-13) 
i 

where subscript I denotes the Ith set of OQA solutions to Eqs. (2.6) and (2.7).   In this 

sense, the differences between liquids and solids can be attributed to the nature of the 

OQA solutions for the many-body configurations.   Indeed, this important concept makes 

it possible to rigorously represent the inherent structures for liquids, which was previously 

proposed and pursued from the perspective of quenched potential minima, and to introduce 

an optimized normal mode spectrum which will be an analogue to the phonon spectrum of 



solids. [1,2] To be more explicit, one can identify q, i.e., the solution to Eq. (2.6), as the 

inherent structures, and the corresponding eigenvectors and eigenvalues, i.e., the solution to 

Eq. (2.7), as the optimized normal modes (ONM) for the inherent structure. This definition 

differs significantly from that of Stillinger and Weber's quenched minima for it incorporates 

the packing structures and thermal fluctuations into a unified theory. The equilibrium state 

of the inherent structure defined in the OQA will shift from the mechanical equilibrium state 

because of the thermal motion, while the distribution of the optimized normal modes will 

display very different features from the Einstein or Debye model which are only meaningful 

for well-defined solid lattices. Moreover, the formulation here is applicable to both classical 

and quantum Boltzmann liquids (cf. the Appendix). Along these lines, we note that the 

mechanical equilibrium state in Stillinger and Weber's theory lacks a plausible interpretation 

in quantum mechanics because inherent quantum fluctuations must introduce uncertainties 

in the particle positions. 

In general, all expectation values of physical variables can be expressed as the sum of 

the distinct OQA solutions weighted by the partitions of the metastable wells. To take into 

account the weight of each solution correctly, the mapping method, introduced as the main 

ingredient in Stillinger and Weber's approach, proves to be helpful. In this approach, the 

liquid hypersurface is divided into regions R(l), each of which can be mapped uniquely to an 

OQA inherent structure. Correspondingly, certain instantaneous liquid configurations are 

traced to the same OQA solution, while other OQA inherent structures must correspond to 

different subsurfaces on the liquid potential hypersurface. In practice, a mapping procedure 

can be devised as follows: 

(a) Randomly select an instantaneous liquid configuration from the canonical distribution; 

(b) Quench the liquid configuration to its potential minimum; 

(c) Solve the self-consistent optimized quadratic approximation near the mechanical stable 

structure; 

(d) Collect data for the optimized inherent structure; 

(e) Repeat steps (a)-(d) for many independent liquid configurations. 

10 



Because of the one-to-one correspondence of the mapping, the thermal partition of the 

optimized quadratic solutions is accurately incorporated into the scheme. The quench in 

the procedure can be achieved by the steepest-descent or the conjugated gradient algorithms. 

Many physical properties can be investigated within the frame of the optimized quadratic 

theory. In particular, the transition between the solid and the liquid states can be viewed 

as the change from a global inherent structure to many possible metastable structures. This 

paper, however, is devoted to the study of liquid state dynamics based on this model. 

To begin the dynamical analysis, one can define an ONM spectrum such that 

1     3N 

DONMM =  3^E<%-ö<foo)]>* (2-14) 

where Wi(qo) are the set of eigensolutions to Eq. (2.10) for the region R(l) mapped from 

an instantaneous liquid configuration q0. The average in Eq. (2.14) is from the canonical 

distribution of liquid configurations. The optimized normal modes variationally capture 

the characteristic stable mode thermal excitations, [11] at least for the time period when 

the system remains in the metastable potential well. In contrast, the INM description 

[9,10,17-25] is instantaneous by nature and, through the continuity of the fluid motion, 

renders instabilities to some of the modes. The ONM spectrum is essentially the liquid state 

analogue of the self-consistent phonon spectrum of anharmonic solids. [28-30] 

On the other hand, the metastability of the optimized normal modes tends to destroy 

the coherence of their vibrations. The liquid motion can be viewed as transitions from 

one optimized inherent structure to another, an interplay of barrier crossings and thermal 

vibrations. The short lifetime of the ONM's will broaden the overall spectrum as in the case 

of a damped oscillator. This dynamical picture is included by introducing a decay factor 

into the time correlation functions. For example, the velocity time correlation function for 

a simple atomic fluid may be written as 

1       r 
CDNM{t) = ^ßjduj DONM{U) cos(ut)f(u, t)    , (2.15) 

where the subscript DNM stand for the "damped normal mode" approximation and f{u,t) 

is a decay function which may, in the most general case, depend on the frequency.   A 

11 



simplifying assumption here is to adopt a simple monotonic decay function which ignores 

the frequency dependence such that the DNM spectrum now reads 

DDNM{u) = J du' F{u - U')DONM{U')    , (2.16) 

where F(u) is the Fourier transform of the universal decay function which broadens the 

ONM spectrum. 

Since a procedure to determine the functional form of the decay function from first prin- 

ciples has not yet been developed, it can simply be assumed to be an exponential function, 

i.e., 

f(t) = exp(-A|t|) (2-17) 

with the corresponding spectral convolution function F{u) given by 

F(u) = * —^ (2-18) 

which takes the form of a Lorentzian broadening function. Since f(t) is not an analytic 

function at t = 0, the decay constant A cannot be determined from the short time behavior of 

a time correlation function. From the microscopic point of view, A can be understood as the 

average escape rate from the OQA inherent structures. Therefore, one might estimate this 

constant from transition state theory (TST) [13,31] provided the typical values of the ONM 

frequencies and the barrier heights are available. Alternatively, we note that Eq. (2.16) with 

the Lorentzian broadening factor Eq. (2.18) is exactly the expression introduced by Zwanzig 

in his analysis of the self-diffusion constant. [8] In the context of the present DNM theory, 

one can therefore adjust the decay constant A to yield the correct experimental diffusion 

constant, i.e., 

D ldu-—^—2DoNM^)    , (2-19) 
J 7T A2 + U2 

which is the zero-frequency component of the Fourier transform of the velocity autocorrela- 

tion function. With the quantities D0NM{U) and A in hand, other liquid state correlation 

12 



functions can then be predicted (cf. the next section). A similar approach has been proposed 

in Ref. [10] in order to introduce damping into the stable mode INM theory. 

Before proceeding to the applications of the theory, we note that an alternative choice 

of /(£) is a Gaussian decay function, i.e., 

f(t) = exV(-Kt2/2)    , (2.20) 

where K is an undetermined constant, and the spectral convolution function is given in this 

case by 

F(a;) = ,/^exp(-a;2/2K) (2.21) 
V Z7T 

which broadens a single frequency into a Gaussian distribution with a width factor K. The 

Gaussian choice of damping function f(t) allows one to impose the condition 

u>l =      duD0NM(u)uj2 + K (2.22) 

where ue is the "Einstein frequency" calculated from equilibrium properties via the second- 

order moment expansion. This approach uniquely specifies the Gaussian width factor K. 

The optimal choice of the damping function /(£) will depend on the problem at hand and 

the timescale of the behavior under examination. The two choices described here are, of 

course, qualitatively different since one (the Gaussian) is based on short time (inertial) 

behavior, while the other (the exponential) is based on longer time (diffusive) behavior. In 

the examples studied in Sec. IVB, an exponential damping function was found to be superior, 

but this is not necessarily always true. 

III. DYNAMICAL FRICTION ON SOLUTE BONDS 

The generalized Langevin equation (GLE) has been used to understand a wide range 

of problems involving molecular motion in liquids such as activated barrier crossing and 

vibrational relaxation. [3,4,12,13] The GLE for a molecular bond can be expressed as 

13 



mq(t) + mü2q(t) + f dt'^t - t')q(t')  =  F{t) (3.1) 
J U 

where q is the displacement in the bond length, F(t) is the random force along the bond, and 

ü can be determined by the mean square displacement ür2 = [ßm{q2)]. Using projection 

operator techniques, one can explicitly derive the expressions for the dynamic friction rj(t), 

the random force F(t), and the second fluctuation dissipation theorem which relates the 

two. However the formal definitions provide little help in evaluating these quantities. It is 

thus necessary to obtain the dynamical friction kernel by some other means. An often used 

approximation is to set the dynamical friction kernel equal to the autocorrelation function 

of the fluctuating force exerted on the rigid bond by the bath degrees of freedom. The 

rigid bond approximation has been shown to be the high frequency limit of true dynamical 

friction coefficient. [16] 

If the bond motion can be characterized by a high frequency oscillation, the dynamic 

friction kernel is equivalent to that evaluated for a rigid bond fixed at the average position of 

the bond coordinate. [16] Then, the second dissipation theorem yields a simple prescription 

for the friction, i.e., 

rj(t) = ß(6F(t)8F(ö)), (3.2) 

where the random force fluctuation 6F(t) is evaluated with the bond frozen at its equilibrium 

length. The explicit relation between the force fluctuations and the dynamic friction cannot 

be derived in general except if the nonlinear bond coordinate is bilinearly coupled to a 

harmonic bath, i.e., 

v = K9(g) + E^2(^-^)2» (3-3) 

where Veq(q) is the potential of mean force along q, x{ is the ith Gaussian bath normal mode, 

and Ci is the coupling strength. It was shown by Zwanzig [4] that the elimination of the bath 

modes from the equations of motion for the above potential yields the GLE. The dynamical 

friction coefficient is then identified as 

14 



N  c2 2   f°°      J(u)) 
„(t)  = Y -V cos(wit)  =  -       du -^ cos(wt) 

r-f or 7T Vo u; 
(3.4) 

i=i   * 

where J(w) is the spectral density, defined in the discrete limit by 

^   N    „2 
7T *-^ C,- 

The random force can be explicitly expressed in terms of the initial conditions of the bath 

variables. Therefore, under the assumption that the initial bath distribution in phase space 

is in thermal equilibrium in the presence of the system, one can readily show that 

V(t) = ß(F(t)F(0))    , (3.6) 

where the equilibrium condition (F) = 0 is implied. 

The introduction of the spectral density J(u) makes it possible to pass from a discrete 

set of modes to a continuum spectrum, and hence to represent an arbitrary time dependent 

friction r)(t). The relation in Eq. (3.6) holds for a harmonic bath regardless of the anharmonic 

bond potential or the bond length. It is for this reason that the Gaussian bath is an 

attractive analytical model to study the solvent frictional effects on vibrational relaxation 

and activated reaction dynamics. In a real system, the asymptotic limit of the friction 

mentioned previously implies that the frequency of the oscillating bond must be much larger 

than the peak frequency of the solvent spectral density. 

While the GLE is an appealing picture, questions remain whether the harmonic bath is 

suitable for describing realistic systems and, if so, how the spectral density can be calculated 

from first principles. The rigor of such a derivation relies on the quadratic nature of the 

bath and the linearity of the couplings. This situation may be best realized in the solid state 

where the bath modes can be well understood as the phonon excitations. In contrast, there 

is not such a global quadratic bath for liquids, a bath defined as being independent of the 

temperature and density. In liquids, however, one can appeal to the concept of an effective 

Gaussian bath-precisely the target of this paper! 

In the previous section, it was proposed that the configuration space of liquids can be 

partitioned into different optimized metastable potential subspaces so that the short time 
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liquid motion is described as effective harmonic thermal excitations in the inherent structure 

wells. The optimized structure and the effective thermal fluctuations can then be found in a 

self-consistent fashion by virtue of the general OQA theory. Furthermore, the dynamics of 

liquids can be separated into the effective harmonic oscillations in the potential wells and the 

transitions between the different wells. In this simplified picture, liquids can be described 

as a set of damped harmonic oscillators.   Following the same line of reasoning, one can 

picture a solute bond in a solvent as being coupled to a damped harmonic bath consisting of 

exponentially decaying normal modes. In light of the present theoretical developments, the 

harmonic bath can be identified as a set of optimized normal modes in the OQA theory. The 

normal modes thus defined will depend on the particular liquid configuration from which 

the optimized configuration is mapped. Therefore, the actual modes and couplings not only 

depend on the nature of the solvent, but also on the mass, flexibility, and length of the bond. 

In order to formalize the DNM picture of dynamical friction, a modification of the OQA 

equations is necessary: the ONM solutions will apply to all degrees of freedom except the 

bond variable.   This introduces an extended OQA theory with one or several degrees of 

freedom constrained so the projection of the solvent modes will introduce linear couplings 

and thus identify the origin of the dynamic friction in the DNM picture.  For the present 

purposes, the formulation will be confined to the specific situation of a nonrotational rigid 

bond. From the perspective of the OQA, a flexible bond would allow for an optimization 

of the bond frequency and Gaussian fluctuations of the bond variables, whereas the rigid 

bond imposes constraints on the OQA equations. It should be noted, however, that in the 

high frequency limit the matrix element corresponding to the bond length variable becomes 

decoupled from other elements in both the force constant and Gaussian width matrices, 

so it actually makes little difference whether the bond length is held fixed or allowed to 

oscillate. Furthermore, when the bond does not rotate, the variables corresponding to the 

bond rotation will be constrained in the optimization.   Similarly, when the center of the 

bond does not move, the variables corresponding to the bond translational motion will be 

constrained. 
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For a rigid bond at rest, the OQA equation can be written under the imposed constraints 

as 

(W), = 0 (3-7) 

(V : VV)q = K    , (3-8) 

where the gradients are in Cartesian space and the symbol (• • •>, denotes a Gaussian average 

in the optimized solvent normal modes. In both cases, the bond degree of freedom is appro- 

priately constrained. After performing the optimization to find the ONM's, the equation for 

the coupling constants is giving by 

(ViV^V), = Ci (3-9) 

where the subscript "i" stands for the ith ONM mode and q stands for the the bond variable. 

Now comes an important point: To calculate the dynamical bond friction in the DNM 

picture, the same exponentially decaying function f(t) is used as for the pure solvent, giving 

{t)  =  1 rduJoNM^cos{ujt)e-xt  = c-*£f? cosM)    , (3.10) 
/W IT J U i=l Ui 

where A is the decay parameter from the pure solvent self-diffusion constant [cf. Eq. (2.19)]. 

The effective DNM spectral density function for the friction should be broadened according 

to the convolution relation in Eq. (2.16), i.e., 

JDNMM  =  ^Jdu' X2 + ^_UJI)2JONM(U')    . (3.11) 

IV. APPLICATIONS 

A.   A Simple Example 

To test the concepts proposed in this paper, numerical calculations were performed for 

a one-dimensional double well potential, given by 

via) = -\? + c<? + gqA (4-1) 
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with the parameters c = 0.01, g = 0.1, m = 1.0, and ß = 5.0. The barrier for this potential 

is located at the origin, separating the two asymmetric wells. Obviously, there are two sets 

of OQA solutions corresponding to the left-hand-side and the right-hand-side of the barrier. 

However, as the temperature is increased or the barrier height is sufficiently decreased, 

the two solutions merge into a single quadratic well near the origin, indicating that the 

thermal excitations overwhelm the barrier. (In contrast, for a many-body potential there 

exists a complicated branching and merging of the multi-dimensional OQA solutions as the 

temperature changes.) For comparison, the instantaneous normal mode (INM) correlation 

function was also calculated for this simple example. Moreover, in order to demonstrate 

the importance of self-consistently adjusting the equilibrium position to the center of the 

thermal excitation along with the fluctuation frequency, the normal mode equation Eq. (2.7) 

was also solved at the quenched potential minimum without optimizing the equilibrium 

position via Eq. (2.6). The resulting quenched normal mode spectrum (QNM) reflects the 

infinitesimal vibrations corresponding to the minima of Stillinger and Weber's mechanical 

stable structures (i.e., at zero temperature). The correlation function CQNM^) resulting 

from the QNM spectrum was assumed to also incorporate the exponential damping function. 

Monte Carlo importance sampling was employed to generate the instantaneous configu- 

rations and the normal mode analysis was applied at each independent configuration: The 

INM frequency was determined by the local curvature, while the ONM equilibrium position 

and frequencies were chosen from the two sets of OQA solutions depending on the instan- 

taneous position, as was the QNM frequency. The frequencies were accumulated to yield 

the corresponding normal mode spectra. To predict the velocity autocorrelation function, 

an exponential decay function with A = 0.1 was employed in Eq. (2.17). For comparison, 

the TST barrier crossing rate for the double well was evaluated to be about 0.15, which is 

somewhat larger than the optimal decay rate. Considering that the TST rate in this simple 

well certainly overestimates the true barrier crossing rate, the choice of A is consistent with 

the interpretation that the incoherence of the ONM's arises from the barrier crossings. 

In Fig. 1, the velocity autocorrelation functions are plotted for the exact MD simulation 
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results, for the DNM prediction, for the QNM prediction, and for the stable-mode INM 

prediction. Clearly, the DNM correlation function gives the best agreement with the MD 

result, the QNM correlation function is out of phase, while the INM correlation function 

dephases too quickly after the second period. It should be noted that in this example, as 

well as in the following two, the correlation functions calculated by the different methods 

(i.e., MD, DNM, INM, QNM) have all been normalized to give the same initial (t = 0) value. 

Since the initial value of a correlation function can be calculated exactly from equilibrium 

properties through a Monte Carlo or MD simulation, any approximate theory can always 

be calibrated to give the exact zero-time value. The important comparison to make here is 

in the time-dependence of the correlation functions. It should also be noted that damping 

could be included in the stable mode INM correlation function as in Ref. [10], but it would 

need to have a significant frequency dependence in order to bring the INM result into better 

agreement with the exact one. That is, a simple exponential or Gaussian damping function 

in the INM theory would just worsen the agreement between the exact and INM correlation 

functions since the stable mode INM function already decays much too rapidly in this case. 

B. Velocity Autocorrelation Functions in Liquids 

The DNM theory was next applied to a simple homogeneous liquid of particles interacting 

through a pairwise potential, given by 

Vim)  = r^    , (4.2) 

where all quantities such as mass, length, time, energy and temperature are assumed to 

be unity. The numerical studies were performed at a temperature of 1.2 and a density 

of 0.84. After the system was relaxed to equilibrium, independent liquid configurations 

following every 1000 Monte Carlo moves were used for the optimization. Following the steps 

described in the text, liquid configurations were sampled, quenched, and optimized. The 

ONM distribution function was accumulated over 300 independent liquid configurations. 
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For comparison, MD simulations were performed for the same system, with 104 trajectories 

being integrated to yield the velocity time correlation function. 

It can be time consuming to solve the self-consistent OQA equations for a many-body 

system. Fortunately, the thermal fluctuation matrix C is a relatively small quantity for 

many cases. Such a narrow Gaussian width allows one to Taylor expand the OQA equations 

through leading order, giving 

V: W + -V: V(V: V)^C  =  K (4.3) 

and 

W + -V(V:V)T/C  =  V(W)-(q-qc) (4.4) 

where all quantities are evaluated at the current optimized position qc. The above equations 

can be solved iteratively until convergence is reached. 

In Fig. 2, the normalized velocity correlation function calculated from the DNM analysis 

is plotted along with the MD simulation result and the stable-mode approximation for the 

INM correlation function. [19] An exponentially decay function with A = 5.0 is used for 

the DNM (I) correlation function, while a Gaussian decay function with the width factor K 

determined from Eq. (2.22) is used for the DNM (II) correlation function. It can be seen 

from Fig. 2 that, as expected, both the INM and DNM (II) correlation functions agree 

with the MD simulation result at short times. At relatively long times, however, the INM 

correlation function becomes out of phase and the DNM (II) correlation function decays too 

rapidly. Overall, it is thus seen that the DNM (I) correlation function with the exponential 

damping function gives the best prediction of the liquid state dynamics. This example 

clearly demonstrates the feasibility and accuracy of the DNM theory for realistic systems. 

In Fig. 3, the exact and DNM (I) correlation functions are plotted along with the ONM 

correlation function having no damping factor (i.e., A = 0). The "oscillation" is correct 

in the latter case and there is some degree of dephasing due to the superposition of the 

different metastable well solutions, but the damping function is obviously required in order 
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to obtain quantitative agreement with the MD result. Recall that the DNM theory explicitly 

separates the oscillations of the various inherent structures from the damping behavior due 

to the transitions between such structures. 

As in the previous example, the accuracy of the DNM result illustrates the value of the 

variational determination of the ONMs. In particular, the phase of the correlation function 

oscillation is well reproduced in the DNM theory because the variational effective oscillator 

frequencies are chosen to model the anharmonic thermal fluctuations of the inherent struc- 

tures. In contrast, the stable mode INM theory does not incorporate such a procedure since 

the stable INMs are determined from the instantaneous configurations of the liquid. The 

INM correlation function is therefore less accurate in reproducing the phase of the exact 

result, although a frequency-dependent damping function [10] might improve the accuracy 

of the INM theory (and, of course, the accuracy of the DNM theory as well). Unfortunately, 

the determination of such a function from first-principles or otherwise is not straightforward. 

C. Dynamical Friction on Solute Bonds 

In this example, the system was the same as the liquid described in the previous subsec- 

tion except that two of the atoms are not allowed to move. As was outlined in Sec. Ill, the 

solute molecule was rigid and held fixed with a separation of unit length. The solvent-solvent 

and solute-solvent site-site interactions were again given by the repulsive 1/r12 potential. 

To solve the self-consistent OQA equations, the Gaussian average was expanded through 

second-order and the solution was found iteratively. The details are very similar to those 

described in Sec. IVB. In the presence of the rigid solute, however, the solvent spectrum was 

modified accordingly due to the presence of the solute. In particular, the three translational 

invariants were broken, which correspond to three nonzero frequency normal modes. The 

dynamical friction on the bond in the DNM theory was then given by Eq. (3.4) with the 

exponential decay function and decay constant taken from the pure liquid described in Sec. 

IVB. 
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In the exact MD calculation, the solvent force parallel to the rigid bond direction f 12 

was projected out at each time step, giving 

F(t)  =  i(F1(t)-F2(t))-ri2 (4-5) 

where Fi{t) is the force on atom i at time t. [16] The factor of 1/2 arises because the 

mass associated with the coordinate is the reduced mass of the diatomic bond. The force 

autocorrelation function was then averaged over MD trajectories to give the dynamical 

friction kernel r}{t) of Eq. (3.6). 

In Fig. 4, the dynamical friction kernels are shown as calculated from the DNM analysis 

with the damping parameter taken from the pure solvent, the INM stable mode approxima- 

tion, and the MD simulation. All curves are normalized to be unity at t = 0. Again, good 

agreement between the DNM and exact friction kernels is obtained, confirming that the 

DNM model can be an accurate approach for the calculation of dynamic friction on solute 

bonds. The stable mode INM approach is again less accurate in this exxample, perhaps 

requiring some kind of frequency-dependent damping function [10] to improve its agreement 

with the exact result. 

V. CONCLUDING REMARKS 

In this paper, a rigorous definition of the inherent liquid state structures and their 

metastable normal modes of vibration was developed in order to calculate liquid state corre- 

lation functions. From this perspective, equilibrium and transport properties can be studied 

in a systematic fashion. Though the exponential decay assumption for the optimized nor- 

mal modes awaits a rigorous derivation, the intuitive picture of the damped oscillators is a 

compelling one which seems consistent with the linear regression hypothesis. Furthermore, 

the damping factor from the DNM solution for the pure solvent can be used along with the 

OQA theory to predict the friction on solute motions, thus providing a microscopic theory 

for the GLE friction kernel. 
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The OQA and DNM equations can be applied to a wide range of problems. As an 

example, the activated barrier crossing problem in condensed phases can be treated as an 

effective multidimensional quadratic system coupled to an unstable degree of freedom so 

that the standard TST approach can be used. [13,32] The Gaussian bath, the unstable 

mode, and the linear couplings can be solved from the extended ONM equations with the 

unstable coordinate constrained at the barrier top. This procedure leads to a Kramers- 

Grote-Hynes type rate constant, [32-34] but it incorporates in a self-consistent fashion the 

anharmonicity in the vicinity of the barrier, the nonlinearity of the bath, and the nonlinear 

couplings between the bath and the reactive coordinate. This theory can also be extended to 

the quantum mechanical limit, improving upon a result derived previously by one of us. [35] 

These and other applications of the present theory will be the subject of future publications. 
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APPENDIX A: QUANTUM DAMPED NORMAL MODE THEORY OF LIQUIDS 

In the quantum mechanical limit, the OQA equations are written as [11] 

(W(q + q))c = 0 (Al) 

(V:W(q + q))c = K (A2) 

where K is the optimized effective force constant matrix and where V is the partial derivative 

vector V< = d/dqi. The notation (• • -)c here denotes a multidimensional Gaussian average 

centered at q, i.e., 

(V(q + q))c =    ,     l [ dq V(q + q) exp [- q • C"1 • q/2]     . (A3) 
wdet[27rC] J 

The Gaussian width factor matrix C, in this case, can be formally expressed as 

C=   £   [ßmSll + ßK]~      , " (A4) 
n=—00 

where m is the 3 AT-dimensional mass matrix and Q,n = 2im/hß. A unitary matrix U can 

be found to diagonalize the mass-scaled force constant matrix K, giving the quantum ONM 

frequencies 

UfKU = [I-Ü2]    , (A5) 

where {üi} is the set of the eigenfrequencies and [I • u } denotes a diagonal matrix with the 

ith diagonal element given by üf. The Gaussian width factor matrix in Eq. (A4) can be 

determined from the relation 

C = ü[l-a]Üt    , (A6) 

where Ü = m~1/2U and the individual elements of the normal mode thermal width vector 

are given by 

ö. = J_/_iM^M     . (AT) 
1      ßöjf \tanh{hßüi/2) J 
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Thus, the set of optimized frequencies {üi} and average positions {q} are variationally ob- 

tained as the self-consistent solution to the transcendental matrix Eqs. (Al) and (A2) in 

iV-dimensional space. 

One can next define a quantum ONM spectrum, giving 

i     3N 

DONM{U) = 3^ £<% - ^(qo)])qo    . (A8) 

where ü>i(q0) are the set of eigensolutions to Eq. (A5) for the region R{1) mapped from 

an instantaneous liquid configuration q0. Following the DNM prescription, the quantum 

velocity correlation function for a simple atomic fluid is given by 

CDNM(t) = -1-. [duDoNM(u)fQ(u)cos(Ljt)e-Xt    , (A9) 

where the quantum mode-weighting factor is given by 

/oM  =       W2) .   " (A10) 

It should be noted that the quantum generalization of the DNM theory is particularly 

significant because information on quantum dynamics is very difficult to obtain for many- 

body systems using direct computer simulation techniques (as opposed to the classical case). 
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FIGURES 

FIG. 1. A plot of the velocity autocorrelation function for the classical potential given by 

Eq. (4.1). The solid circles are the MD simulation results, the solid line is the DNM result, the 

dashed line is the QNM result, and the dash-dot line is the INM result with the unstable modes 

removed. 

FIG. 2. A plot of the velocity autocorrelation function for a liquid with a pairwise potential 

given by Eq. (4.2). The solid circles are the MD simulation results, the solid line is the DNM (I) 

result for an exponential damping, the dashed line is the DNM (II) result for a Gaussian damping, 

and the dash-dot line is the INM result with the unstable modes removed. 

FIG. 3. A plot of the velocity autocorrelation function for a liquid with a pairwise potential 

given by Eq. (4.2). The solid circles are the MD simulation results, the solid line is the DNM (I) 

result for an exponential damping, the dashed line is the ONM result for no damping (A = 0), and 

the dash-dot line is the INM result with the unstable modes removed. 

FIG. 4. A plot of the friction kernel for a rigid solute bond as described in Sec. IVC. The 

solid line is the MD result, the dashed line is the DNM prediction with the exponential damping 

parameter determined from the pure solvent, and the dash-dot line is the INM result with the 

unstable modes removed. 
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